Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Electron. j. biotechnol ; 16(5): 8-8, Sept. 2013. ilus, tab
Article in English | LILACS | ID: lil-690468

ABSTRACT

Background: The progress in material science and the recent advances in biodegradable/biocompatible polymers and magnetic iron oxide nanoparticles have led to develop innovative diagnostic and therapeutic strategies for diseases based on multifunctional nanoparticles, which include contrast medium for magnetic resonance imaging, agent for hyperthermia and nanocarriers for targeted drug delivery. The aim of this work is to synthesize and characterize superparamagnetic iron oxide (magnetite), and to encapsulate them into poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles for biomedical applications. Results: The magnetite nanoparticles were confirmed by X-ray diffraction and exhibited a size of 22.3 ± 8.8 nm measured by transmission electron microscopy (TEM). Polymeric PHBV nanoparticles loaded with magnetite (MgNPs) were analyzed using dynamic light scattering and showed a size of 258.6 ± 35.7 nm and a negative zeta potential (-10.8 ± 3.5 mV). The TEM examination of MgNPs exhibited a spherical core-shell structure and the magnetic measurements showed in both, non-encapsulated magnetite and MgNPs, a superparamagnetic performance. Finally, the in vitro studies about the magnetic retention of MgNPs in a segment of small intestine of rats showed an active accumulation in the region of the magnetic field. Conclusions: The results obtained make the MgNPs suitable as potential magnetic resonance imaging contrast agents, also promoting hyperthermia and even as potential nanocarriers for site-specific transport and delivery of drugs.


Subject(s)
Magnetite Nanoparticles/chemistry , Magnetic Resonance Imaging , Drug Delivery Systems , Contrast Media , Microscopy, Electron, Transmission , Nanomedicine , Magnetite Nanoparticles/analysis , Magnetite Nanoparticles/ultrastructure , Magnetic Iron Oxide Nanoparticles/chemistry , Hyperthermia, Induced
2.
São Paulo; s.n; s.n; 2012. 167 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-847693

ABSTRACT

Em virtude da grande atenção que os nanomateriais magnéticos recebem atualmente, cientistas de diversas áreas (química, física, engenharia e medicina) vêm estudando as propriedades e as aplicações de nanopartículas magnéticas, gerando uma grande demanda por materiais de alta qualidade. As propriedades dos nanomateriais magnéticos são fortemente dependentes de suas propriedades intrínsecas (p. ex., composição, cristalinidade, tamanho e forma) e das interações entre as partículas, portanto sofrendo grande influencia do método de síntese aplicado. Várias técnicas para produção de nanomateriais magnéticos são conhecidas, porém muitas delas geram materiais com baixa qualidade no que diz respeito a tamanho médio e faixa de distribuição de tamanhos nas amostras. O presente trabalho teve por objetivo estudar a síntese de nanopartículas de magnetita (Fe3O4) por decomposição térmica do acetilacetonato de ferro (III), um método já conhecido e que se destaca pela alta qualidade de amostras (elevado controle no tamanho, estreita distribuição de tamanhos e forma bem definida), porém de alto custo. Estudamos a influência dos aditivos normalmente empregados no meio reacional no controle da morfologia, tamanho e polidispesão das amostras preparadas e sugerimos outros reagentes (monoóis, dióis e polióis) em busca de novas condições de síntese de nanopartículas magnéticas com morfologia e tamanho controlados. Do ponto de vista prático, reduzimos o custo de produção de nanomateriais magnéticos de alta qualidade pela utilização de aditivos mais baratos e de fácil obtenção no mercado. Os diferentes aditivos propostos modificaram as propriedades magnéticas ligadas às interações dipolares entre as partículas magnéticas. A influência dos aditivos foi testada em crescimentos sucessivos usando partículas de magnetita já formadas como sementes. O perfil de crescimento se mostrou diferente em função dos reagentes empregados e as amostras tiveram suas interações hiperfinas medidas para avaliar a relação entre o tamanho e aumento da cristalinidade das partículas formadas. O revestimento das partículas de magnetita com ouro foi estudado buscando aumentar a biocompatibilidade e proteger os núcleos magnéticos, porém as estruturas core-shell obtidas não apresentaram comportamento superparamagnético. Os estudos das interações hiperfinas mostraram perda da cristalinidade após o revestimento com ouro. As partículas de magnetita foram aplicadas para produzir calor através de hipertermia magnética, sendo que a interação entre as partículas se mostrou fundamental para o aumento do calor gerado. Outra aplicação biomédica testada foi o uso das partículas de magnetita como contraste para imagem por ressonância magnética nuclear. Nossas amostras mostraram desempenho semelhante às partículas disponíveis no mercado a alto custo


Magnetic nanomaterials have received a great deal of attention from scientists of various research fields (chemistry, physics, engineering and medicine) that have been studying the properties and applications of magnetic nanoparticles, generating a great demand for high quality materials. The magnetic properties of nanomaterials are strongly dependent on their intrinsic properties (eg., composition, crystallinity, size and shape) and the interactions between particles, therefore are influenced by the method of synthesis applied. Various techniques for the production of nanomarerials are known, but many of them produce poor quality materials, regarding to the average size, broad size distribution range and variable shape. The present work aimed to study the synthesis of magnetite nanoparticles (Fe3O4) by thermal decomposition of iron (III) acetylacetonate, a method already known for delivering high quality samples (high control on the size and narrow size distribution ), but at high cost. We studied the influence of additives normally used in the reaction medium to control the morphology, size and polydispersion and suggested other reagents (monols, diols and polyols) in the search for new conditions to synthesize magnetic nanoparticles with controlled size and morphology. From a practical viewpoint, we have reduced cost of producing high-quality magnetic nanoparticles using cheaper additives available on the market. The different additives used in the synthetic protocol modified the magnetic properties which are related to dipolar interactions between magnetic particles. The influence of additives was tested in successive growth using magnetite particles previously formed as seeds. The growth profile showed to be different depending on the additives used and the samples had their hyperfine interactions measured to estimate the relationship between the size increasing and the crystallinity of the particles formed. The coating of the magnetite particles with gold was studied in order to increase the biocompatibility and to protect the magnetic core. In this case, the core-shell structure lost the superparamagnetic behavior. Studies of hyperfine interactions showed the loss of crystallinity after coating the nanoparticles with gold. The synthesized particles were used to produce heat by magnetic hyperthermia, where the interaction between the particles proved to be crucial to increase the generated heat. Another biomedical application tested was the use of magnetite particles as contrast agent for magnetic resonance imaging. Our samples showed similar performance to the commercially available particles at high cost


Subject(s)
Therapeutics/methods , Diagnostic Imaging/mortality , Nanostructures/analysis , Magnetite Nanoparticles/analysis , Magnetic Resonance Spectroscopy , Nanoparticles
SELECTION OF CITATIONS
SEARCH DETAIL